SHA
文件Hash计算工具是一款实用的小工具,旨在帮助你计算文件的哈希值。通过计算文件的哈希值,你可以验证文件的完整性和一致性,确保文件在传输或备份过程中没有被篡改或损坏。此工具支持多种常见的哈希算法,如MD5、SHA-1、SHA-256等,为你提供方便快捷的文件哈希计算服务。
Keccak是一种被选定为SHA-3标准的单向散列函数算法。 Keccak可以生成任意长度的散列值,但为了配合SHA-2的散列值长度,SHA-3标准中规定了SHA3-224、SHA3-256、SHA3-384、SHA3-512这4种版本。在输入数据的长度上限方面,SHA-1为2的64次方-1比特,SHA-2为2的128次方-1比特,而SHA-3则没有长度限制。 此为,FIPS 202还规定了两个可输出任意长度散列值的函数,分别为SHAKE128和SHAKE256。据说SHAKE这个名字取自Secure Hash Algorithm与Keccak这几个单词。
Keccak是一种被选定为SHA-3标准的单向散列函数算法。 Keccak可以生成任意长度的散列值,但为了配合SHA-2的散列值长度,SHA-3标准中规定了SHA3-224、SHA3-256、SHA3-384、SHA3-512这4种版本。在输入数据的长度上限方面,SHA-1为2的64次方-1比特,SHA-2为2的128次方-1比特,而SHA-3则没有长度限制。 此为,FIPS 202还规定了两个可输出任意长度散列值的函数,分别为SHAKE128和SHAKE256。据说SHAKE这个名字取自Secure Hash Algorithm与Keccak这几个单词。
SHA-3第三代安全散列算法(Secure Hash Algorithm 3),之前名为Keccak(念作/ˈkɛtʃæk/或/kɛtʃɑːk/))算法,设计者宣称在 Intel Core 2 的CPU上面,此算法的性能是12.5cpb(每字节周期数,cycles per byte)。不过,在硬件实做上面,这个算法比起其他算法明显的快上很多。
SHA-3第三代安全散列算法(Secure Hash Algorithm 3),之前名为Keccak(念作/ˈkɛtʃæk/或/kɛtʃɑːk/))算法,设计者宣称在 Intel Core 2 的CPU上面,此算法的性能是12.5cpb(每字节周期数,cycles per byte)。不过,在硬件实做上面,这个算法比起其他算法明显的快上很多。
SHA-3第三代安全散列算法(Secure Hash Algorithm 3),之前名为Keccak(念作/ˈkɛtʃæk/或/kɛtʃɑːk/))算法,设计者宣称在 Intel Core 2 的CPU上面,此算法的性能是12.5cpb(每字节周期数,cycles per byte)。不过,在硬件实做上面,这个算法比起其他算法明显的快上很多。
SHA-3第三代安全散列算法(Secure Hash Algorithm 3),之前名为Keccak(念作/ˈkɛtʃæk/或/kɛtʃɑːk/))算法,设计者宣称在 Intel Core 2 的CPU上面,此算法的性能是12.5cpb(每字节周期数,cycles per byte)。不过,在硬件实做上面,这个算法比起其他算法明显的快上很多。
SHA-224、SHA-256、SHA-384,和SHA-512并称为SHA-2。新的散列函数并没有接受像SHA-1一样的公众密码社区做详细的检验,所以它们的密码安全性还不被大家广泛的信任。虽然至今尚未出现对SHA-2有效的攻击,它的算法跟SHA-1基本上仍然相似;因此有些人开始发展其他替代的散列算法。
HMAC是密钥相关的哈希运算消息认证码,HMAC运算利用哈希算法,以一个密钥和一个消息为输入,生成一个消息摘要作为输出。
HMAC是密钥相关的哈希运算消息认证码,HMAC运算利用哈希算法,以一个密钥和一个消息为输入,生成一个消息摘要作为输出。
HMAC是密钥相关的哈希运算消息认证码,HMAC运算利用哈希算法,以一个密钥和一个消息为输入,生成一个消息摘要作为输出。
HMAC是密钥相关的哈希运算消息认证码,HMAC运算利用哈希算法,以一个密钥和一个消息为输入,生成一个消息摘要作为输出。
HMAC是密钥相关的哈希运算消息认证码,HMAC运算利用哈希算法,以一个密钥和一个消息为输入,生成一个消息摘要作为输出。
HMACSHA1 是从 SHA1 哈希函数构造的一种键控哈希算法,被用作 HMAC(基于哈希的消息验证代码)。 此 HMAC 进程将密钥与消息数据混合,使用哈希函数对混合结果进行哈希计算,将所得哈希值与该密钥混合,然后再次应用哈希函数。 输出的哈希值长度为 160 位。
SHA-3,之前名为Keccak算法,是一个加密杂凑算法。 SHA-3并不是要取代SHA-2,因为SHA-2目前并没有出现明显的弱点。 由于对MD5出现成功的破解,以及对SHA-0和SHA-1出现理论上破解的方法,NIST感觉需要一个与之前算法不同的,可替换的加密杂凑算法,也就是现在的SHA-3。
正式名称为 SHA 的家族第一个成员发布于 1993年。然而现在的人们给它取了一个非正式的名称 SHA-0 以避免与它的后继者混淆。两年之后, SHA-1,第一个 SHA 的后继者发布了。 另外还有四种变体,曾经发布以提升输出的范围和变更一些细微设计: SHA-224, SHA-256, SHA-384 和 SHA-512 (这些有时候也被称做 SHA-2):
正式名称为 SHA 的家族第一个成员发布于 1993年。然而现在的人们给它取了一个非正式的名称 SHA-0 以避免与它的后继者混淆。两年之后, SHA-1,第一个 SHA 的后继者发布了。 另外还有四种变体,曾经发布以提升输出的范围和变更一些细微设计: SHA-224, SHA-256, SHA-384 和 SHA-512 (这些有时候也被称做 SHA-2):
正式名称为 SHA 的家族第一个成员发布于 1993年。然而现在的人们给它取了一个非正式的名称 SHA-0 以避免与它的后继者混淆。两年之后, SHA-1,第一个 SHA 的后继者发布了。 另外还有四种变体,曾经发布以提升输出的范围和变更一些细微设计: SHA-224, SHA-256, SHA-384 和 SHA-512 (这些有时候也被称做 SHA-2):
正式名称为 SHA 的家族第一个成员发布于 1993年。然而现在的人们给它取了一个非正式的名称 SHA-0 以避免与它的后继者混淆。两年之后, SHA-1,第一个 SHA 的后继者发布了。 另外还有四种变体,曾经发布以提升输出的范围和变更一些细微设计: SHA-224, SHA-256, SHA-384 和 SHA-512 (这些有时候也被称做 SHA-2):
安全哈希算法(Secure Hash Algorithm)主要适用于数字签名标准 (Digital Signature Standard DSS)里面定义的数字签名算法(Digital Signature Algorithm DSA)。对于长度小于2^64位的消息,SHA1会产生一个160位的消息摘要。当接收到消息的时候,这个消息摘要可以用来验证数据的完整性。在传输的过程中,数据很可能会发生变化,那么这时候就会产生不同的消息摘要。 SHA1有如下特性:不可以从消息摘要中复原信息;两个不同的消息不会产生同样的消息摘要,(但会有1x10 ^ 48分之一的机率出现相同的消息摘要,一般使用时忽略)。